1. Introduction
In this tutorial, we’ll learn how to use reactive data access features of Spring Data Cassandra.
Particularly, this is the third article of the Spring Data Cassandra article series. In this one, we’ll expose a Cassandra database using a REST API.
We can read more about Spring Data Cassandra in the first and second articles of the series.
2. Maven Dependencies
As a matter of fact, Spring Data Cassandra supports Project Reactor and RxJava reactive types. To demonstrate, we’ll use the Project reactor’s reactive types Flux and Mono in this tutorial.
To start with, let’s add the dependencies needed for our tutorial:
<dependency> <groupId>org.springframework.data</groupId> <artifactId>spring-data-cassandra</artifactId> <version>2.1.2.RELEASE</version> </dependency> <dependency> <groupId>io.projectreactor</groupId> <artifactId>reactor-core</artifactId> </dependency>
The latest version of the spring-data-cassandra can be found here.
Now, we’re going to expose SELECT operations from the database via a REST API. So, let’s add the dependency for RestController, too:
<dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-web</artifactId> </dependency>
3. Implementing our App
Since we will be persisting data, let’s first define our entity object:
@Table public class Employee { @PrimaryKey private int id; private String name; private String address; private String email; private int age; }
Next, its time to create an EmployeeRepository that extends from ReactiveCassandraRepository. It’s important to note that this interface enables the support for reactive types:
public interface EmployeeRepository extends ReactiveCassandraRepository<Employee, Integer> { @AllowFiltering Flux<Employee> findByAgeGreaterThan(int age); }
3.1. Rest Controller for CRUD Operations
For the purpose of illustration, we’ll expose some basic SELECT operations using a simple Rest Controller:
@RestController @RequestMapping("employee") public class EmployeeController { @Autowired EmployeeService employeeService; @PostConstruct public void saveEmployees() { List<Employee> employees = new ArrayList<>(); employees.add(new Employee(123, "John Doe", "Delaware", "jdoe@xyz.com", 31)); employees.add(new Employee(324, "Adam Smith", "North Carolina", "asmith@xyz.com", 43)); employees.add(new Employee(355, "Kevin Dunner", "Virginia", "kdunner@xyz.com", 24)); employees.add(new Employee(643, "Mike Lauren", "New York", "mlauren@xyz.com", 41)); employeeService.initializeEmployees(employees); } @GetMapping("/list") public Flux<Employee> getAllEmployees() { Flux<Employee> employees = employeeService.getAllEmployees(); return employees; } @GetMapping("/{id}") public Mono<Employee> getEmployeeById(@PathVariable int id) { return employeeService.getEmployeeById(id); } @GetMapping("/filterByAge/{age}") public Flux<Employee> getEmployeesFilterByAge(@PathVariable int age) { return employeeService.getEmployeesFilterByAge(age); } }
Finally, let’s add a simple EmployeeService:
@Service public class EmployeeService { @Autowired EmployeeRepository employeeRepository; public void initializeEmployees(List<Employee> employees) { Flux<Employee> savedEmployees = employeeRepository.saveAll(employees); savedEmployees.subscribe(); } public Flux<Employee> getAllEmployees() { Flux<Employee> employees = employeeRepository.findAll(); return employees; } public Flux<Employee> getEmployeesFilterByAge(int age) { return employeeRepository.findByAgeGreaterThan(age); } public Mono<Employee> getEmployeeById(int id) { return employeeRepository.findById(id); } }
3.2. Database Configuration
Then, let’s specify the keyspace and port to use for connecting with Cassandra in application.properties:
spring.data.cassandra.keyspace-name=practice spring.data.cassandra.port=9042
4. Testing the Endpoints
Finally, its time to test our API endpoints.
4.1. Manual Testing
To begin with, let’s fetch the employee records from the database:
curl localhost:8080/employee/list
As a result, we get all the employees:
[ { "id": 324, "name": "Adam Smith", "address": "North Carolina", "email": "asmith@xyz.com", "age": 43 }, { "id": 123, "name": "John Doe", "address": "Delaware", "email": "jdoe@xyz.com", "age": 31 }, { "id": 355, "name": "Kevin Dunner", "address": "Virginia", "email": "kdunner@xyz.com", "age": 24 }, { "id": 643, "name": "Mike Lauren", "address": "New York", "email": "mlauren@xyz.com", "age": 41 } ]
Moving on, let’s try to find a specific employee by his id:
curl localhost:8080/employee/643
As a result, we get Mr. Mike Lauren back:
{ "id": 643, "name": "Mike Lauren", "address": "New York", "email": "mlauren@xyz.com", "age": 41 }
Finally, let’s see if our age filter works:
curl localhost:8080/employee/filterByAge/35
And as expected, we get all the employees whose age is greater than 35:
[ { "id": 324, "name": "Adam Smith", "address": "North Carolina", "email": "asmith@xyz.com", "age": 43 }, { "id": 643, "name": "Mike Lauren", "address": "New York", "email": "mlauren@xyz.com", "age": 41 } ]
4.2. Integration Testing
Additionally, let’s test the same functionality by writing a test case:
@RunWith(SpringRunner.class) @SpringBootTest public class ReactiveEmployeeRepositoryIntegrationTest { @Autowired EmployeeRepository repository; @Before public void setUp() { Flux<Employee> deleteAndInsert = repository.deleteAll() .thenMany(repository.saveAll(Flux.just( new Employee(111, "John Doe", "Delaware", "jdoe@xyz.com", 31), new Employee(222, "Adam Smith", "North Carolina", "asmith@xyz.com", 43), new Employee(333, "Kevin Dunner", "Virginia", "kdunner@xyz.com", 24), new Employee(444, "Mike Lauren", "New York", "mlauren@xyz.com", 41)))); StepVerifier .create(deleteAndInsert) .expectNextCount(4) .verifyComplete(); } @Test public void givenRecordsAreInserted_whenDbIsQueried_thenShouldIncludeNewRecords() { Mono<Long> saveAndCount = repository.count() .doOnNext(System.out::println) .thenMany(repository .saveAll(Flux.just( new Employee(325, "Kim Jones", "Florida", "kjones@xyz.com", 42), new Employee(654, "Tom Moody", "New Hampshire", "tmoody@xyz.com", 44)))) .last() .flatMap(v -> repository.count()) .doOnNext(System.out::println); StepVerifier .create(saveAndCount) .expectNext(6L) .verifyComplete(); } @Test public void givenAgeForFilter_whenDbIsQueried_thenShouldReturnFilteredRecords() { StepVerifier .create(repository.findByAgeGreaterThan(35)) .expectNextCount(2) .verifyComplete(); } }
5. Conclusion
In summary, we learned how to use reactive types using Spring Data Cassandra to build a non-blocking application.
As always, check out the source code for this tutorial over on GitHub.